
Django MSSQL Documentation
Release dev

Django MSSQL authors

May 21, 2014

Contents

i

ii

Django MSSQL Documentation, Release dev

Provides an ADO based Django database backend for Microsoft SQL Server.

Contents 1

Django MSSQL Documentation, Release dev

2 Contents

CHAPTER 1

Welcome to Django-mssql’s documentation!

Contents:

1.1 Quickstart

1.1.1 Installation

• Install django-mssql with your favorite Python package manager:

pip install django-mssql

• Add the DATABASES configuration.

DATABASES = {
’default’: {

’NAME’: ’my_database’,
’ENGINE’: ’sqlserver_ado’,
’HOST’: ’dbserver\\ss2008’,
’USER’: ’’,
’PASSWORD’: ’’,

}
}

Note: Although the project is named django-mssql the python module is named
sqlserver_ado.

1.1.2 Getting the code

The project code is hosted on Bitbucket

hg clone https://bitbucket.org/Manfre/django-mssql/

1.1.3 Dependencies

Django

Django 1.2 and newer are supported by the current release. Support for Django 1.1 requires getting code from tag
legacy-1.1.

3

https://bitbucket.org/Manfre/django-mssql/
http://www.djangoproject.com/

Django MSSQL Documentation, Release dev

Python

This backend requires Python 2.6 or newer. Python 3.x support will be investigated when Django supports it.

PyWin32

PyWin32 build 212 or newer is required.

1.2 Settings

1.2.1 DATABASES

Please see the Django documentation on DATABASES settings for a complete list of available settings. Django-mssql
builds upon these settings.

This is an example of a typical configuration:

DATABASES = {
’default’: {

’NAME’: ’my_database’,
’ENGINE’: ’sqlserver_ado’,
’HOST’: ’dbserver\\ss2008’,
’USER’: ’’,
’PASSWORD’: ’’,

}
}

ENGINE

This value must be set to sqlserver_ado.

HOST

Default: ’127.0.0.1’

This defines the Microsoft SQL Server to establish a connection. This value can be a hostname or IP address.

PORT

Default: ’’ (Empty string)

This defines the network port to use when connecting to the server. If not defined, the standard Microsoft SQL Server
port will be used.

NAME

This is the name of the SQL server database.

4 Chapter 1. Welcome to Django-mssql’s documentation!

http://sourceforge.net/projects/pywin32/
https://docs.djangoproject.com/en/1.4/ref/settings/#databases

Django MSSQL Documentation, Release dev

USER

Default: ’’ (Empty string)

This defines the name of the user to use when authenticating to the server. When empty, a trusted connection (SSPI)
will be used.

PASSWORD

Default: ’’ (Empty string)

When a USER is defined, this field should be the plain text password to use when authenticating.

Note: Any user or service that can read the configuration file can will be able to see the plain-text password. Trusted
connections are recommended.

TEST_CREATE

Default: True

This setting is specific to the django-mssql backend and controls whether or not the test database will be created and
destroyed during the test creation. This is useful when integrating to a legacy database with a complex schema that is
created by another application or cannot be easily created by Django’s syncdb.

DATABASES = {
’default’: {

’NAME’: ’test_legacy_database’,
’HOST’: r’servername\ss2008’,
’TEST_NAME’: ’test_legacy_database’,
’TEST_CREATE’: False,

}
}

Note: This is not intended to allow you to run tests against a QA, staging, or production database.

1.2.2 OPTIONS

Django-mssql provides a few extra OPTIONS that are specific to this backend. Please note that while the main
database settings are UPPERCASE keys, the OPTIONS dictionary keys are expected to be lowercase (due to legacy
reasons).

use_mars

Default: True

Set to False to disable Multiple Active Recordsets. It is not recommended to disable MARS. Without MARS enabled,
you will probably end up seeing the error “Cannot create new connection because in manual or distributed transaction
mode”.

Note: This doesn’t really work properly with the “SQLOLEDB” provider.

1.2. Settings 5

Django MSSQL Documentation, Release dev

extra_params

Default: ’’ (Empty string)

This value will be appended to the generated connection string. Use this to provide any specific connection settings
that are not controllable with the other settings.

provider

Default: ’SQLCLI10’

The SQL provider to use when connecting to the database. If this doesn’t work, try ‘SQLCLI11’ or ‘SQLOLEDB’.

Note: use_mars = True doesn’t always work properly with ‘SQLOLEDB’ and can result in the error “Cannot
create new connection because in manual or distributed transaction mode.” if you try to filter a queryset with another
queryset.

disable_avg_cast

Default: False

This backend will automatically CAST fields used by the AVG function as FLOAT to match the behavior of the core
database backends. Set this to True if you need SQL server to retain the datatype of fields used with AVG.

New in version 1.1.

Note: SQL server maintains the datatype of the values used in AVG. The average of an int column will be an int.
With this option set to True, AVG([1,2]) == 1, not 1.5.

use_legacy_date_fields

Default: True

This setting alters which data types are used for the DateField, DateTimeField, and TimeField fields. When
True, the fields will all use the datetime data type. When False, they will use date, datetime, and time
data types.

New in version 1.4.

1.3 Usage

Django-mssql is a Django database backend and supports the interface for the paired Django version. It should
behave the same as the core backends.

1.3.1 Executing Custom SQL

Please refer to the Django documentation for Executing custom SQL directly.

6 Chapter 1. Welcome to Django-mssql’s documentation!

http://msdn.microsoft.com/en-us/library/ms177677.aspx
https://docs.djangoproject.com/en/dev/topics/db/sql/#executing-custom-sql-directly

Django MSSQL Documentation, Release dev

1.3.2 Stored Procedures

Django-mssql provides support for executing stored procedures, with and without parameters. The main function
that should be used to execute a stored procedure is callproc. callproc will allow executing stored procedures
with both input and output parameters, integer return values, and result sets.

def callproc(self, procname, parameters=None):
"""Call a stored database procedure with the given name.

The sequence of parameters must contain one entry for each
argument that the sproc expects. The result of the
call is returned as modified copy of the input
sequence. Input parameters are left untouched, output and
input/output parameters replaced with possibly new values.

The sproc may also provide a result set as output,
which is available through the standard .fetch*() methods.

Extension: A "return_value" property may be set on the
cursor if the sproc defines an integer return value.
"""

Example:

This example assumes that there exists a stored procedure named uspDoesSomething that expects two parameters
(int and varchar), and returns 1 when there is a result set.

from django.db import connection

cursor = connection.cursor()
try:

cursor.callproc(’[dbo].[uspDoesSomething]’, [5, ’blah’])

if cursor.return_value == 1:
result_set = cursor.fetchall()

finally:
cursor.close()

It is also possible to use the cursor’s execute method to call a stored procedure, but return_value will not be
set on the cursor and output parameters are not supported. This usage is intended for calling a stored procedure that
returns a result set or nothing at all.

Example:

from django.db import connection

cursor = connection.cursor()
try:

cursor.execute(’EXEC [dbo].[uspFetchSomeData]’)
result_set = cursor.fetchall()

finally:
cursor.close()

1.3.3 RawStoredProcedureManager

The RawStoredProcedureManager provides the raw_callproc method that will take the name of a stored
procedure and use the result set that it returns to create instances of the model.

Example:

1.3. Usage 7

Django MSSQL Documentation, Release dev

from sqlserver_ado.models import RawStoredProcedureManager

class MyModel(models.Model):
...

objects = RawStoredProcedureManager()

sproc_params = [1, 2, 3]
MyModel.objects.raw_callproc(’uspGetMyModels’, sproc_params)

Note: The db_column name for the field must match the case of the database field as returned by the stored procedure,
or the value will not be populated and will get fetched by the ORM when the field is later accessed.

New in version 1.2.

1.4 Management Commands

Adding sql_app to your INSTALLED_APPS adds the following custom management commands.

1.4.1 dbgui

This will launch SQL Management Studio, connected to your project’s default database.

python manage.py dbgui

1.5 Datatypes

There are known issues related to Python/DB data types.

1.5.1 Dates and Times

When using Django-mssql with SQL Server 2005, all of the date related fields only support the datetime
data type. Support for these legacy data types can be enabled using the use_legacy_date_fields
option, or using the fields LegacyDateField, LegacyDateTimeField, and LegacyTimeField in
sqlserver_ado.fields.

To allow migrating specific apps or only some of your models to the new date times, the model fields DateField,
DateTimeField, and TimeField in sqlserver_ado.fields use the new data types regardless of the
use_legacy_date_fields option.

from django.db import models
from sqlserver_ado.fields import DateField, DateTimeField, TimeField

class MyModel(models.Model):
when use_legecy_date_fields is False, models.*Field will behave like these
a_real_date = DateField() # date data type
a_datetime2 = DateTimeField() # datetime2 data type
a_real_time = TimeField() # time data type

when use_legecy_date_fields is True, models.*Field will behave like these

8 Chapter 1. Welcome to Django-mssql’s documentation!

Django MSSQL Documentation, Release dev

a_date = LegacyDateField() # datetime data type
a_datetime = LegacyDateTime() # datetime data type
a_time = LegacyTimeField() # datetime data type

datetime limitations

With SQL Server 2005, only the datetime data type is usable with Django. This data type does not store enough
precision to provide the full range of Python datetime dates and will round to increments of .000, .003, or .007
seconds. The earliest supported datetime date value is January 1, 1753.

SQL Server 2008 introduces a datetime2 type, with support for fractional seconds and the full range of Python
datetime dates. To use this time, either set the :settings:‘use_legacy_date_fields‘ option to False or use the
sqlserver_ado.fields.DateTimeField with your models.

1.5.2 bigint

Prior to Django 1.3, bigint was not provided. This backend provided model fields to allow using the bigint
datatype.

class sqlserver_ado.fields.BigAutoField

This is a django.db.models.AutoField for the bigint datatype.

class sqlserver_ado.fields.BigIntegerField

This was previously an django.db.models.IntegerField that specified the bigint datatype. As of Django
1.3, django.db.models.BigIntegerField is provided and should be used instead.

class sqlserver_ado.fields.BigForeignKey

This is a django.db.models.ForeignKey that should be used to reference either a BigAutoField or a
BigIntegerField.

Note: If your (legacy) database using bigints for primary keys, then you’ll need to replace any introspected
ForeignKey fields with BigForeignKey for things to work as expected.

1.5.3 money

The money and smallmoney data types will be introspected as DecimalField with the appropriate values for
max_digits and decimal_places. This does not mean that they are expected to work without issue.

1.5.4 Unsupported Types

These types may behave oddly in a Django application, as they have limits smaller than what Django expects from
similar types:

• smalldatetime

• tinyint

• real

1.5. Datatypes 9

http://msdn.microsoft.com/en-us/library/ms187819.aspx
http://msdn.microsoft.com/en-us/library/ms180878(SQL.100).aspx

Django MSSQL Documentation, Release dev

1.6 Testing

All tests are contained in the tests folder.

1.6.1 Django Support

Database Introspection

Located in folder tests/test_inspectdb. These tests verify the database introspection.

To run:

• set up the SQLINSTANCE

• python manage.py inspectdb

Main Tests

The tests for basic functionality and regressions are located in the tests/test_main/ folder.

To run:

• set up the SQLINSTANCE

• python manage.py test

Note: The test app apitest contains a test suite for checking DB-API 2 conformance.

To run only the DB-API 2 tests:

python manage.py test apitest

Running Django Test Suite

To run the Django test suite, you will need to create a settings file that lists ‘sqlserver_ado’ as the ENGINE.

Example settings:

DATABASES = {
’default’: {

’ENGINE’: ’sqlserver_ado’,
’NAME’: ’django_framework’,
’HOST’: r’localhost\ss2008’,
’USER’: ’’,
’PASSWORD’: ’’,

},
’other’: {

’ENGINE’: ’sqlserver_ado’,
’NAME’: ’django_framework_other’,
’HOST’: r’localhost\ss2008’,
’USER’: ’’,
’PASSWORD’: ’’,

}
}

SECRET_KEY = "django_tests_secret_key"

10 Chapter 1. Welcome to Django-mssql’s documentation!

https://docs.djangoproject.com/en/dev/internals/contributing/writing-code/unit-tests/

Django MSSQL Documentation, Release dev

1.7 Changelog

1.7.1 v1.4

• Support for Django v1.3 has been removed.

• Corrected DB-API 2 testing documentation.

• Fixed issue with slicing logic that could prevent the compiler from finding and mapping column aliases properly.

• Improved the “return ID from insert” logic so it can properly extract the column data type from user defined
fields with custom data type strings.

• Fixed case for identifiers in introspection. Thanks Mikhail Denisenko.

• Added option use_legacy_date_fields (defaults to True) to allow changing the DatabaseCre-
ation.data_types to not use the Microsoft preferred date data types that were added with SQL Server 2008.
django-mssql issue #31

• Improved accuracy of field type guessing with inspectdb. See Introspecting custom fields

• Fixed issue with identity insert using a cursor to the wrong database in a multi-database environment. Thanks
Mikhail Denisenko

• Fixed constraint checking. django-mssql issue #35 Thanks Mikhail Denisenko

• Enabled can_introspect_autofield database feature. Django ticket #21097

• Any date related field should now return from the database as the appropriate Python type, instead of always
being a datetime.

• Backend now supports doing date lookups using a string. E.g.
Article.objects.filter(pub_date__startswith=’2005’)

• check_constraints will now check all disabled and enabled constraints. This change was made to match
the behavior tested by backends.FkConstraintsTests.test.test_check_constraints.

• Improved date_interval_sql support for the various date/time related datatypes. The timedelta value
will control whether the database will DATEADD using DAY or SECOND. Trying to add seconds to a date, or
days to a time will generate database exceptions.

• Fixed issue with provider detection that prevented DataTypeCompatibility=80 from being automatically
added to the connection string for the native client providers.

• Fixed SQL generation error that occured when ordering the query based upon a column that is not being returned.

• Added savepoint support. MS SQL Server doesn’t support savepoint commits and will no-op it. Other databases,
e.g. postgresql, mostly use it as a way of freeing server resources in the middle of a transaction. Thanks Martijn
Pieters.

• Minor cleanup of limit/offset SQL mangling to allow custom aggregates that require multiple column replace-
ments. django-mssql issue #40 Thanks Martijn Pieters for initial patch and tests.

• Savepoints cannot be used with MARS connections. django-mssql issue #41

1.7.2 v1.3.1

• Ensure Django knows to re-enable constraints. django-mssql issue #29

1.7. Changelog 11

https://bitbucket.org/Manfre/django-mssql/issue/31
https://bitbucket.org/Manfre/django-mssql/issue/35
https://code.djangoproject.com/ticket/21097
https://bitbucket.org/Manfre/django-mssql/issue/40
https://bitbucket.org/Manfre/django-mssql/issue/41
https://bitbucket.org/Manfre/django-mssql/issue/29

Django MSSQL Documentation, Release dev

1.7.3 v1.3

• Backend now supports returning the ID from an insert without needing an additional query. This is disabled for
SQL Server 2000 (assuming that version still works with this backend). django-mssql issue #17

– This will work even if the table has a trigger. django-mssql issue #20

• Subqueries will have their ordering removed because SQL Server only supports it when using TOP or FOR
XML. This relies upon the with_col_aliases argument to SQLCompiler.as_sql only being True
when the query is a subquery, which is currently the case for all usages in Django 1.5 master. django-mssql
issue #18

• UPDATE statements will now return the number of rows affected, instead of -1. django-mssql issue #19

• Apply fix for Django ticket #12192. If QuerySet slicing would result in LIMIT 0, then it shouldn’t reach the
database because there will be no response.

• Implemented DatabaseOperation cache_key_culling_sql. Django ticket #18330

• Fixed cast_avg_to_float so that it only controls the cast for AVG and not mapping other aggregates.

• Improved IP address detection of HOST setting. django-mssql issue #21

• Set database feature ignores_nulls_in_unique_constraints = False because MSSQL cannot
ignore NULLs in unique constraints.

• django-mssql issue #26 Documented clustered index issue with Azure SQL. See Azure requires clustered in-
dices.

1.7.4 v1.2

• Ensure master connection connects to the correct database name when TEST_NAME is not defined.

• Connection.close() will now reset adoConn to make sure it’s gone before the CoUninitialize.

• Changed provider default from ‘SQLOLEDB’ to ‘SQLNCLI10’ with MARS enabled.

• Added RawStoredProcedureManager, which provides raw_callproc that works the same as raw, except
expects the name of a stored procedure that returns a result set that matches the model.

• Documented known issue with database introspection with DEBUG = True and column names containing
‘%’. See Introspecting tables with ‘%’ columns.

• Fixed error with iendswith string format operator.

1.7.5 v1.1

• Updated SQLInsertCompiler to work with Django 1.4

• Added support for disable_constraint_checking, which is required for loaddata to work properly.

• Implemented DatabaseOperations.date_interval_sql to allow using expressions like
end__lte=F(’start’)+delta.

• Fixed date part extraction for week_day.

• DatabaseWrapper reports vendor as ‘microsoft’.

• AVG function now matches core backend behaviors and will auto-cast to float, instead of maintaining
datatype. Set database OPTIONS setting disable_avg_cast to turn off the auto-cast behavior.

12 Chapter 1. Welcome to Django-mssql’s documentation!

https://bitbucket.org/Manfre/django-mssql/issue/17
https://bitbucket.org/Manfre/django-mssql/issue/20
https://bitbucket.org/Manfre/django-mssql/issue/18
https://bitbucket.org/Manfre/django-mssql/issue/18
https://bitbucket.org/Manfre/django-mssql/issue/19
https://code.djangoproject.com/ticket/12192
https://code.djangoproject.com/ticket/18330
https://bitbucket.org/Manfre/django-mssql/issue/21
https://bitbucket.org/Manfre/django-mssql/issue/26

Django MSSQL Documentation, Release dev

• StdDev and Variance aggregate functions are now supported and will map to the proper MSSQL named func-
tions. Includes work around for Django ticket #18334.

• Monkey patched django.db.backends.util.CursorWrapper to allow using cursors as ContextMan-
agers in Python 2.7. Django ticket #17671.

1.8 Known Issues

1.8.1 Introspecting tables with ‘%’ columns

Attempting to run manage.py inspectdb with DEBUG = True will raise TypeError: not enough
arguments for format string. This is due to CursorDebugWrapper and its use of % format strings.
If you encounter this problem, you can either rename the database column so it does not include a ‘%’ (percent)
character, or change DEBUG = False in your settings when you run manage.py inspectdb.

1.8.2 Introspecting custom fields

Some datatypes will be mapped to a custom model field provided by Django-mssql. If any of these fields are used, it
will be necessary to add import sqlserver_ado.fields to the top of the models.py file. If using a version of
Django prior to 1.7, it will be necessary to also remove the “models.” prefix from any of these custom fields. Django
ticket #21090

1.8.3 Azure requires clustered indices

From http://msdn.microsoft.com/en-us/library/windowsazure/ee336245.aspx#cir

Windows Azure SQL Database does not support tables without clustered indexes. A table must have a
clustered index. If a table is created without a clustered constraint, a clustered index must be created
before an insert operation is allowed on the table.

The workaround is to dump the create SQL, add a clustered index, manually apply the SQL to the database.

1.8. Known Issues 13

https://code.djangoproject.com/ticket/18334
https://code.djangoproject.com/ticket/17671
https://code.djangoproject.com/ticket/21090
https://code.djangoproject.com/ticket/21090
http://msdn.microsoft.com/en-us/library/windowsazure/ee336245.aspx#cir

